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Most security software tools try to detect malicious 

components by cryptographic hashes, signatures or based 

on their behavior. The former, is a widely adopted approach 

based on Integrity Measurement Architecture (IMA) 

enabling appraisal and attestation of system components. 

The latter, however, may induce a very long time until 

misbehavior of a component leads to a successful detection. 

Another approach is a Dynamic Runtime Attestation (DRA) 

based on the comparison of binary code loaded in the 

memory and well-known references. Since DRA is a 

complex approach, involving multiple related components 

and often complex attestation strategies, a flexible and 

extensible architecture is needed. In a cooperation project 

an architecture was designed and a Proof of Concept (PoC) 

successfully developed and evaluated. To achieve needed 

flexibility and extensibility, the implementation facilitates 

central components providing attestation strategies 

(guidelines). These guidelines define and implement the 

necessary steps for all relevant attestation operations, i.e. 

measurement, reference generation and verification.  

Keywords: system state verification, memory measurment, 

Linux, kernel architecture, The Concise Binary Object 

Representation (CBOR), IMA, TCG, Trusted Platform Module 

(TPM). 

I. INTRODUCTION 

Today’s systems are vulnerable to a vast majority of 

different attacks. In particular, attacking systems during 

runtime becomes more relevant each day. Very stealthy 

attacks target the modification of programs directly in 

memory after their execution; thus, common static 

integrity measurement cannot detect these modifications 

As a result Dynamic Runtime Integrity Verification and 

Evaluation (DRIVE) [6] was proposed. DRIVE enables 

detection of many memory related modifications, but 

often requires complex strategies for a successful 

attestation. As a result, it is necessary to design a flexible 

and extensible architecture that combines software and 

hardware security technologies and which supports 

DRIVE’s attestation scheme. 

In this work, we propose an architecture that 

implements a concept of so-called guidelines. Guidelines 

represent these flexible and extensible strategies for all 

relevant attestation steps, i.e. measurement, reference 

value generation and verification. In particular, our 

architecture and guideline implementation supports: (1) 

Flexibility, enabling independent system component 

attestation, such as user-space and kernel-space 

components; (2) high decoupling, by introducing triplets 

of functional-related guidelines that do not interfere with 

other triplets; and (3) extensibility, by defining clear and 

concise interfaces in all relevant components that 

facilitate a uniform intra-component communication. 

To verify the feasibility of our proposed architecture, 

all components and various guideline-triplets for different 

system components were implemented, including user-

space processes, Loadable Kernel Modules (LKM) and 

the Linux Kernel. In this work, the overall architecture 

and concept will be introduced and a detailed description 

of one particular guideline triplet will be provided, 

implementing a full attestation of user-space processes. 

II. BACKGROUND 

A. Trusted Platform Module (TPM) 

A Trusted Platform Module (TPM) is a computer chip 

(microcontroller) that can securely store different 

artifacts, for instance, passwords, certificates, or 

encryption keys, for very different security relevant use-

cases. In addition to that, another core functionality of the 

TPM is storing specific platform configuration 

measurements that can be used to securely report the 

configuration to an external system. Based on this 

reported information, an external system can determine 

whether the reporting system is currently in a trustworthy 

state or not. This reporting and verification process is 

called an attestation process. The TPM itself fulfills two 

important requirements in this concept: (1) providing 

authentication of reports, proofing the report originated 

from a particular well-known system; and (2) providing 

tamper-resistant reports, since the reported information is 

directly derived from the secure storage of the TPM 

providing hardware-based cryptography [2]. 

These designated storage areas inside the TPM are 

called Platform Configuration Registers (PCRs) and 

represent a configuration, i.e. a platform state, in form of 

cryptographic hash values [3], which are managed by a 



process called extending, implemented by the 

tpm_extend() operation.  

In turn, the tpm_quote() operation implements the 

authenticated secure reporting capability by signing a set 

of multiple PCRs based on a well-known TPM-key, 

eventually enabling an external system to verify the 

origin of the report. 

B. Memory Management 

The system memory is organized in two distinct 

regions: kernel space and user space memory. The kernel 

memory, reserved during early boot, is exclusively used 

for kernel relevant operations and data-structures and the 

user space memory is delegated to processes. 

Different memory control structures and operations 

exist inside the kernel. These manage and control the 

access to different memory locations. Besides the 

physical memory address pointing to a concrete physical 

position in the system’s memory, there are three types of 

addresses relevant in this work: (1) kernel logical 

addresses, (2) kernel virtual addresses and (3) user virtual 

addresses. The major difference is that logical addresses 

(LA) directly map to physical addresses (PA), whereas 

virtual addresses (VA) use a specific mapping mechanism 

and may point to memory locations that are not yet 

present in memory or swapped out; thus, they are not 

directly accessible. User VA start at address 0x0, describe 

a continuous area, are isolated from one another and their 

layout is the same for every process. The kernel maps 

these VA to the actual location in physical memory, 

which may or may not be consecutive. Besides these, 

there is the bus address type, but since it is not of interest 

for this project, this type will not be further explained. 

The kernel divides the system memory into pages 

with a fixed size, i.e. usually 4096 bytes on x86 and 

x86_64 architectures. As a result, a page is the smallest 

unit the kernel can manage. Each page is identified by a 

page table entry (PTE). A PTE contains a set of platform 

dependent flags that describe different properties, for 

instance, page state, page access rights and other 

metadata. 

The PTE are organized in a multilevel dictionary, i.e. 

the page table, allowing quick lookups between a VA and 

its related PTE. For this purpose a so called page frame 

number (PFN) in encoded as part of the PTE. The PFN 

identifies the related page and is retrieved by performing 

a bit shifting operation on the PTE. 

As mentioned previously, memory pages may not yet 

be loaded in system memory or swapped out if the system 

runs low of memory. When accessed, these missing pages 

first need to be read from the hard drive and copied into 

memory, which in turn is a very slow operation. 

However, this is only relevant for user space memory, 

since kernel space related pages are always present in 

memory. Still, whether a page is present in memory or 

not is indicated by the present flag inside the related PTE. 

This information is important, since the state of the other 

flags is undefined if a page is not present in memory. 

To facilitate a simple and fast management of 

processes, the kernel uses several nested data structures, 

which are shown in figure 1. Top-level structure is the 

task structure, which represents a single process inside 

the kernel. The memory management structure (mm-

structure) is nested inside task structure. It contains 

information about the memory that was allocated for this 

specific process. 

Process memory is divided into segments. Each 

segment is represented by a virtual memory area (VM A) 

structure, described by user VA specifying the beginning 

(VM start) and end (VM end) of the segment. Additional 

flags, derived from the correspondent PTE flags, describe 

the access permission of each segment in a platform 

independent way. This can be any combination of: (r)ead, 

(w)rite or e(x)ecutable. Still, all pages that belong to a 

particular segment must reproduce these flags on their 

individual PTE. Thus, each page within a segment must 

have the exact same flags. 

 

Figure 1.  Linux kernel memory management 

C. Integrity Measurement Architecture (IMA) 

IMA is a kernel integrity subsystem to detect 

accidentally or maliciously altered software loaded by the 

OS. For this purpose, IMA maintains a runtime 

measurement list (RML) that is represented by a PCR 

inside the TPM. This anchored value represents an 

aggregated integrity value over the entire list with a 

similar construction mechanism as used by the 

tpm_extend() function. This enables the secure reporting 

of the anchored measurement list, since it cannot be 

compromised from software due to its tamper-resistant 

properties assured by the TPM.  

Figure 2 shows the basic steps of IMA procedure. At 

first, IMA measures the loaded software component on 

the observed system triggered by the mmap() system call. 

Then, it generates a cryptographic hash of the file and 

stores it in RML. Afterwards, IMA constructs the 

aggregated integrity value and anchors it within TPM by 

facilitating the tpm_extend() operation. In turn, TPM 

computes its relevant cryptographic hash as described and 

stores it into a PCR. RML can then be analyzed locally or 

remotely by a verifying system in which measured values 

are compared to well-known references. As a result, the 



verification system can detect whether a loaded software 

component was compromised and, in consequence, 

decide if the observed system is in a trustworthy state, i.e. 

behaving as intended. 

 
Figure 2.  IMA procedure overview 

III. ARCHITECTURE 

In this section the designed measurement and 

verification system is described by outlining its structure, 

all components as well as their tasks and interaction.  

A. High Level Architecture 

From a high level point of view the whole 

measurement and verification system consists of three 

subsystems, depicted in figure 3, which will be described 

individually in the following sections. 

On the observed system the Drive Kernel Module 

(DKM) represents the central main component. The 

DKM is responsible for performing the measurement of 

user space processes, loadable kernel modules and the 

running kernel image, by reading their actual memory 

contents. 

The second component, Reference Value Generator 

(RVG) should ideally be run on an initially trusted 

system. The RVG generates reference values on the basis 

of well-known and trusted files, which are used to verify 

the results produced by the DKM. Generated reference 

values are stored in the Reference Value Storage (RVS). 

To compare DKM measurement results to reference 

values, the Drive Verification Component (DVC) is 

required. It receives results from the DKM, searches for 

corresponding reference values inside RVS and compares 

these values. Furthermore, DVC generates a report stating 

the verification process result which is stored in the 

verification storage for further use. 

 

Figure 3.  High-level architecture 

B. Drive Kernel Module (DKM) 

The DKM is a loadable kernel module (LKM) for the 

Linux kernel. It provides the framework for measurement 

of user and kernel space memory areas as well as access 

to the stored measurement results. The DKM architecture 

can be split into four major components. 

The first component manages the communication with 

user space via a character device or a SecurityFS node, 

both referred to as Drive Control Interface (DCI) in the 

following. The DCI allows invoking measurements of 

individual targets or the whole system via a command 

string. For instance, a measurement target can be a single 

user space process, an LKM or the image of the running 

kernel. Additionally, a read operation on DCI is used to 

retrieve the list of stored measurement results. The results 

are encoded into a binary format and sent to the process 

reading from the DCI. The PoC implementation uses the 

Concise Binary Object Representation (CBOR) [4] to 

represent the measurement results, but the 

implementation can be modified to produce other binary 

formats as well, for instance ASN.1. 

The Drive Measurement Component (DMC) performs 

the actual measurement of the target. This includes 

enrichment of internal data structures with additional 

information about the measurement target, selection and 

execution of matching guidelines (see section III.E 

Guidelines), and collection of the generated results. The 

measurement operations inside this area are performed 

asynchronously by using a Linux kernel work queue. 

They may either be invoked by commands received via 

DCI or, if configured, by a reoccurring timer. The latter is 

realized by injecting a delayed work package into the 

work queue that invokes a Full System Measurement 

(FSM) once its timer has run out. After invocation of the 

FSM, the work package re-queues itself into the work 

queue, using the same delay as before. The timer can be 

configured or disabled at module load time via a module 

parameter. 



 

Figure 4.  DKM Architecture 

The measurement results from DMC are injected into 

a linked list, i.e. the Result List, storing the values for 

further processing. The contents of this list are consumed 

by the Anchoring Component. It processes the results 

generated in the previous phase by removing unnecessary 

information that is no longer required for the following 

steps. Consequently, this process generates so-called 

reduced results, which only contain the list of relevant 

measurement result information. Irrelevant data, such as 

information about the measurement target and 

timestamps created during the measurement process are 

dropped into save memory. The reduced results are then 

processed, added to the Dynamic Measurement List 

(DML) and anchored inside a trust anchor. As previously 

explained, the anchoring provides a secure way to prove 

and verify the integrity of the results during verification 

(see section III.D Verification). 

The PoC implementation of the DKM uses a TPM 

chip as trust anchor. Both TPM 1.2 and TPM 2.0 are 

supported [5], however, the current TPM 2.0 API 

implementation inside the Linux kernel does only support 

TPM 1.2 operations. Consequently, TPM 2.0 specific 

features are not supported. For example, only SHA-1 

hashes are supported for the PCR extend operation. On a 

technical level, reduced results generated in the previous 

step are serialized to the same binary format used for the 

DML output. The resulting byte string acts as input for 

the described tpm_extend() operation during the 

anchoring process. The to-be-extended PCR is being 

specified via a separate module parameter while the 

module is loading. 

Finally, DML management is conducted by 

comprising all results that have been produced since the 

module was loaded. The responsible component manages 

insertion of new results into the list and allows read 

access to the list’s content. Except for inserting new 

results, DML needs to be immutable. 

C. Reference Value Generator (RVG) 

The Reference Value Generator (RVG) is a 

complement to the DKM. It provides a framework to 

generate reference values that will be used to verify the 

integrity of the results produced by DKM. Although 

different guideline implementations are required for 

RVG, it utilizes a guideline system, which is similar to 

the one used by DKM (see section III.E Guidelines). The 

RVG itself is a user space process that should ideally be 

operated on a machine other than the observed system. 

The RVG requires trusted ELF files of all measurement 

targets meant to be measured on the DKM side. As 

expected, these files must match the exact same version 

of the files on the target system, but should originate from 

a secured and initially trusted reference system, 

guaranteeing not to be compromised at time of reference 

value generation. 

The ELF files can be placed in a separate directory or 

a directory structure, for instance a copy or dump of the 

secure reference system. If the RVG is pointed to this 

directory, it will read all ELF files found and generate 

corresponding reference values. The exact generation 

process is defined by the actual guidelines 

implementation. 

In addition to the generation of reference values, the 

RVG provides an interface to specify additional 

parameters of target systems. This includes, but is not 

limited to, the index of the used TPM PCR, the version of 

the QUOTE_INFO data structure generated by the TPM 

and the configuration of the running kernel. Most of these 

values are required to verify integrity of received DML 

contents. 

After their generation, the reference values and the 

additional device parameters are stored inside RVS, 

which usually is a database. The RVS must be accessible 

by RVG during verification, explained in the following. 

D. Verification 

The Drive Verification Component (DVC) completes 

the set of components required for the overall system 

architecture. DMC verifies a set of results received from 

DKM against the reference values generated by RVG. 

The results of this verification determine whether a 

system is considered trustworthy or compromised. Any 

possible follow up actions that happen after the system 

state was determined, especially in cases where the 

system is considered compromised, is not in the scope of 

this component. A remote attestation system may 

integrate the DVC into a particular workflow, processing 

the verification results and take necessary remediation 

actions. 

The input required for DVC is encapsulated in a 

separate data-structure, i.e. the System State Report 

(SSR). The SSR is a CBOR encoded data-structure and 

consists of two elements: (1) a TPM quote at time of SSR 

generation and (2) the DML, comprising the current 

measurement results. A user space tool called SSR 

Generator was implemented to build the SSR. It uses the 

TPM tools to get the current TPM quote and reads the 

encoded DML via the DCI. 

The architecture of DVC is divided into two sub-

modules, which verify different aspects of the received 

SSR. The first module verifies the integrity of DML by 

replicating the tpm_extend()operation and comparing the 



computed result with the comprised TPM quote. This 

verification requires the initial PCR starting value. It then 

takes one result at a time from DML, performs the 

replicated TPM operation, and compares the result with 

the quote received from SSR. If they don’t match, the 

process is repeated with the next result until no results are 

left or a matching result was found. If a matching result 

was found before reaching the end of DML, the 

remaining results are dropped and not verified. This is 

necessary because the TPM extend operation runs 

asynchronously which is why DML may contain results 

that were not anchored in time. If the end of DML was 

reached without a match, verification process is aborted 

and a corresponding failure result is written to 

verification storage. In this case, the received SSR was 

either modified during transit, for instance due to a man-

in-the-middle attack or the observed system was modified 

unintendedly, since DML measurement and verification 

content is not coherent. 

If the integrity of DML was verified successfully, 

DML content is processed by the second verification 

module. This module finally verifies the actual 

measurement results against the reference values 

generated by RVG. To find correct reference values in 

the reference values storage, the verification requires 

additional information about the target system, such as a 

unique identifier (e.g. the IP address), the system’s patch 

level or other metadata. 

It then processes the measurement results found in the 

DML, retrieves the corresponding reference values and 

compares them. If they do not match, the system must be 

considered compromised and a corresponding report is 

generated. The actual comparison is again done by 

guidelines. Each result contains information about the 

guideline that generated it and, consequently, the 

verification is aware of which guideline to call in order to 

verify the specific result. 

Since each verification guideline is implemented in a 

way that exactly matches the reference values and results 

generated by its complement part on the DMC and RVG 

sides, not every result must have a matching individual 

reference value. It is possible for a guideline to define a 

result that must always match a specific value. Simply 

comparing the result to this value is sufficient. This 

means, eventually isolated cases no reference value is 

required. 

After processing all results inside DML a report for 

the entire verification process is generated and stored in 

the verification storage. The verification can only be 

considered successful and valid, if the integrity 

verification and all individual result entries were also 

considered valid. If only a single entry was considered 

invalid, the verification state results in a failure state, 

which means the observed system is not in a trustworthy 

state. 

E. Guidelines 

The system components described in the previous 

sections are only frameworks that require additional 

business logic to perform their actual operations. This 

business-logic is represented as so-called guidelines. 

Guidelines provide a flexible and highly dynamic way to 

extend and modify the whole system. This is done by 

implementing a single interface function with code, 

tailored to fulfill the implementation specific behavior. 

Guidelines come in sets of three implementations, one 

for each of the major system components. The 

implementations themselves are highly specialized for the 

actual targets they will process. Since guidelines may be 

added and removed from the system at any time, they 

must not use any functionality provided by other 

guidelines to prevent dependencies between them. If 

multiple guidelines require the exact same functionality, 

it should be added to the core frameworks and then 

referenced by the guideline implementations. 

All three implementations of a guideline must agree 

on the results and reference values they will produce and 

verify. Additionally, they need to agree on a system-wide 

unique guideline name, which will allow the verification 

framework to match results with their corresponding 

reference values. 

A DMC guideline implementation must be able to 

generate measurement results for at least one type of 

measurement target. Possible targets are user space 

processes, LKM or a kernel image. It must provide a 

public function that matches the interface definition 

provided by DKM. The function receives a data structure 

that describes the measurement target to be processed. If 

the guideline implementation is used for multiple target 

types, it must provide its own way to distinguish between 

those and perform the correct operations. Still, the static 

nature of the Linux kernel and LKM requires that the 

implementation of the guideline is included in DKM 

source code and made available to the guideline selection 

process. A more dynamic way to add, remove and select 

guidelines is planned for future developments but is not 

part of this PoC implementation. 

RVG implementation of a guideline must generate 

reference values that can be processed by the verification 

implementation to verify results produced by DMC 

guideline. Current implementation of RVG requires the 

guideline to provide a Python module that contains a 

public function matching the interface definition 

specified by RVG. The function receives an ELF file that 

must be processed by guideline implementation.  

Reference values themselves can be of any type. They 

may be simple values that are directly compared with 

values found in measurement results or prerequisites that 

allow the verification component to perform further 

calculations to compute actual reference values. The 

implementation of the particular guideline triplet contains 

details regarding which values are required and how these 

are generated. RVG must know a guideline 



implementation in order to access it. This can be achieved 

by registering it using the command line API provided by 

RVG. 

The third required guideline implementation is used 

by DVC. It must be able to receive measurement results 

from DML exported by DMC guideline and compare 

those to the reference values generated by RVG 

guideline. The interface function provides guideline 

implementation with both values; thus making it available 

for DVC. For some results it may be required that the 

verification guideline performs additional calculations to 

get the actual reference values for result comparison. For 

instance, this is required for results that contain memory 

offsets only known at runtime. In this case RVG 

generates base values required for calculation and DMC 

results contain additional meta-data entries with the 

relevant offsets, present at time of measurement. 

Consequently, the verification guideline must combine 

these base values and the received offsets and compare 

the result to the actual measurement result. The current 

implementation requires a verification guideline to be 

available in the verification source code which also needs 

to be accessed by the guideline selection mechanism. 

Similar to DKM, a more dynamic way to add and remove 

guidelines is planned for future developments. 

IV. EXAMPLE GUIDELINE IMPLEMENTATION 

This section will discuss an example of guideline 

implementation. It will describe all three parts of the 

guideline triplet and their individual operations at a more 

detailed level. A basic understanding of Linux kernel 

memory management might prove helpful to understand 

all details. Please refer to section II.B for an introduction 

to the required structures. 

The first subsection will discuss DMC 

implementation. In the second subsection RVG 

implementation will be described and the third subsection 

will finally explain the process of measurement result 

validation. The example guideline will measure user 

space processes. 

A. DMC implementation 

Once a measurement target was selected, DMC will 

provide a data structure containing a reference to the 

kernel structure that represents the actual target. The data 

structure contains all information that is required for 

identification and processing of the target. It is passed to 

the guideline implementation alongside with an empty 

list. The guideline is expected to fill this list with its 

measurement results. 

The goal of this example guideline is to access the 

memory of a user space process, read all memory 

segments that contain executable code, and calculate a 

hash digest over the contents of each segment. The hash 

is one of the results produced by this guideline. 

Additionally, it reads the access rights on the segment 

and tests if there are page table entries (PTE) that have a 

different set of flags. Both are also produced as results. 

This means, the guideline will return three results for 

each memory segment that contains executable code. 

To identify and access the memory segments in 

question, the guideline must access the mm-structure via 

the task structure and iterate over the list of VM area 

structures contained inside, whereas each VM area 

structure represents a single memory segment used by 

this process. In addition to that, dynamically linked 

libraries are also mapped into the process’ virtual 

memory. Hence, the list also contains all VM area 

structures of the linked libraries that need to be measured. 

To identify the segments that must be processed the 

guideline analyses the flags inside the VM area structure 

whether they are readable and executable. Additionally, 

the guideline checks if the shared flag is not set. Only 

segments that are private to the process must be read. If 

the flags match the requirements, they are extracted and 

stored as a result entry. Since the flags are platform-

independent, RVG can generate a bit mask that must be 

applied to the received flags to test for the correct set of 

flags. Thus, they need no further processing and can be 

added directly to the result list. 

For each identified segment, the guideline then uses 

the start and end addresses of the VM area to calculate 

the number of pages this segment is composed of. The 

guideline must make sure that each of these pages is 

loaded into memory. As a result, it issues a request to 

access each page, and the kernel loads them eventually 

into memory. Once a page is loaded and available, its 

contents are read and fed into a hash algorithm
1
. 

Furthermore, the guideline resolves the PTE that 

belongs to the current page by using the mm-structure of 

the process and the start address of the page, which is a 

user virtual address. The kernel provides functions to 

perform this lookup. The resolved PTE is then tested for 

the correct flags. If the PTE flags do not match the set of 

flags required by the guideline, a result counter is 

increased. 

Once all pages for a segment are processed, the 

guideline finalizes the hash operation, receives the digest 

and adds it as a result entry to the result list. Finally, the 

counter mentioned above is read and its value is added to 

the result list as well. This concludes the measurement 

operation on the DMC side. 

B. RVG implementation 

RVG operates on ELF files of the measurement target 

and on all libraries that are dynamically linked into a 

process. The process’ ELF file header information shows 

which libraries are required. 

To generate reference values for the VM area flags 

the guideline builds a bit mask that matches the one 

expected on the actual flags. This can be done because 

the VM area flags are a platform-independent 

                                                           
1
 The algorithm can be configured at module compile time default 

is set to SHA-1, but any algorithm supported by the kernel API may be 

specified. 



representation of the actual PTE flags. In case of the 

memory segments, which are to be processed by this 

guideline triplet, the reference value results in 0x5. That 

means only read and execute flags are allowed to be set. 

Generation of the reference hash digests for the 

memory segment contents is more complicated. First, the 

segment in question is located inside the ELF file and 

copied into a buffer. In order to do this, the ELF file is 

loaded with corresponding library functions and a data 

structure is generated that allows access to individual 

parts and information stored inside the ELF file. 

Once the memory segment is copied, it must be page 

aligned. This means that it must be appended with 0-

bytes until its length is a multiple of the page size of the 

target system. As a result, RVG allocates additional 

memory for the buffer and fills the allocated space with 

0x0. 

Once the memory segment is page aligned, the 

guideline calculates several different hash-digests of its 

contents and stores them as reference values. The values 

are identified by a string, representing the hash algorithm 

used. Hence, the verification can later identify which 

reference value it has to select for the comparison. 

No reference value is generated for the PTE flags test, 

because the guideline implementations agreed on the fact 

that this value always must be zero to be considered 

valid. Any other value might indicate a compromised 

system. 

C. Verification implementation 

The guideline implementation on the verification side 

takes the measurement results provided by DMC and 

compares them to the reference values provided by RVG. 

The process of verification is simple in this case, because 

it requires no complex calculations during the verification 

process. 

For each measurement target that was processed on 

the DMC side, the verification receives a set of result 

entries. This set contains all results generated for a user 

space process as described in section IV.A. The 

verification guideline iterates over all result entries and 

performs the necessary validation steps. For each entry, a 

report stating the verification state is generated and stored 

in the verification storage. These reports can later be used 

by reporting tools to generate a detailed verification 

report for the target system. 

The PTE flags test result is a comparison to a zero 

value, since the guideline triplet agreed on this particular 

result value. If it is different from zero, this individual 

result entry is marked as invalid. 

For the other result entries, the guideline retrieves the 

relevant reference values from RVS and performs further 

comparisons. This means, the result and reference hash 

digests are compared bitwise. Only if both values are 

equal, the result is considered valid. 

To test the VM area flags, the set of flags received 

from the DMC is compared to the corresponding 

reference value. This is done by using bit-wise 

operations. First, a bit-wise AND is calculated on the 

basis of the result and a bit-mask that has all four relevant 

bits set. These are the read, write, execute, and shared 

flags, which match a mask of 0xF. Afterwards, the result 

of this operation is compared to the reference value. If 

they are equal, the required flags are set accordingly and 

all other flags are not. In this case the result is considered 

valid. Otherwise, it is considered invalid. 

In case no reference value can be found for a specific 

result entry, the entry is also considered invalid. This is 

because unexpected elements must have been found on 

the target system, which are not meant to be present for 

the process. The same is true for reference values without 

a matching measurement entry. In this case an expected 

segment is missing on the target system. 

DMC implementation will only provide the 

configured digest of the segment. This means, once one 

hash digest was found and verified, the other reference 

values for different hash digests are ignored.  

The guideline execution stops once all provided result 

entries are processed. 

V. CONCLUSION AND FUTURE WORK 

In this work, instantiated architecture for secure 

measurement and verification of Dynamic Runtime 

Information for Linux based OS was presented. Our 

solution facilitates hardware based security technologies 

and enables an attestation on the basis of introduced 

guidelines. The presented guidelines represent a 

particular triplet set of rules, to attest a targeted system, 

on the basis of generated reference values. The 

application of a triplet-set on the basis of user space 

processes was demonstrated and all necessary steps to 

conduct a secure attestation were described. In future 

work, further capabilities of guidelines will be exploited 

and concrete guideline triplets for more complicated 

attestation schemes, such as LKM or the Linux kernel, 

will be provided. 
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