
The 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications

21-23 September, 2017, Bucharest, Romania

Software-design for Internal Security Checks

with Dynamic Integrity Measurement (DIM)

Prof. Dr. K.-O. Detken
1
, M. Jahnke

1
,T. Rix

1
, A. Rein

2

1
DECOIT GmbH, Fahrenheitstraße 9, D-28359 Bremen

detken/jahnke/rix@decoit.de, http://www.decoit.de
2
 Huawei Technologies Duesseldorf GmbH, Europlatz 5, D-64293 Darmstadt,

andre.rein@huawei.com, http://www.huawei.com

Most security software tools try to detect malicious

components by cryptographic hashes, signatures or based

on their behavior. The former, is a widely adopted approach

based on Integrity Measurement Architecture (IMA)

enabling appraisal and attestation of system components.

The latter, however, may induce a very long time until

misbehavior of a component leads to a successful detection.

Another approach is a Dynamic Runtime Attestation (DRA)

based on the comparison of binary code loaded in the

memory and well-known references. Since DRA is a

complex approach, involving multiple related components

and often complex attestation strategies, a flexible and

extensible architecture is needed. In a cooperation project

an architecture was designed and a Proof of Concept (PoC)

successfully developed and evaluated. To achieve needed

flexibility and extensibility, the implementation facilitates

central components providing attestation strategies

(guidelines). These guidelines define and implement the

necessary steps for all relevant attestation operations, i.e.

measurement, reference generation and verification.

Keywords: system state verification, memory measurment,

Linux, kernel architecture, The Concise Binary Object

Representation (CBOR), IMA, TCG, Trusted Platform Module

(TPM).

I. INTRODUCTION

Today’s systems are vulnerable to a vast majority of

different attacks. In particular, attacking systems during

runtime becomes more relevant each day. Very stealthy

attacks target the modification of programs directly in

memory after their execution; thus, common static

integrity measurement cannot detect these modifications

As a result Dynamic Runtime Integrity Verification and

Evaluation (DRIVE) [6] was proposed. DRIVE enables

detection of many memory related modifications, but

often requires complex strategies for a successful

attestation. As a result, it is necessary to design a flexible

and extensible architecture that combines software and

hardware security technologies and which supports

DRIVE’s attestation scheme.

In this work, we propose an architecture that

implements a concept of so-called guidelines. Guidelines

represent these flexible and extensible strategies for all

relevant attestation steps, i.e. measurement, reference

value generation and verification. In particular, our

architecture and guideline implementation supports: (1)

Flexibility, enabling independent system component

attestation, such as user-space and kernel-space

components; (2) high decoupling, by introducing triplets

of functional-related guidelines that do not interfere with

other triplets; and (3) extensibility, by defining clear and

concise interfaces in all relevant components that

facilitate a uniform intra-component communication.

To verify the feasibility of our proposed architecture,

all components and various guideline-triplets for different

system components were implemented, including user-

space processes, Loadable Kernel Modules (LKM) and

the Linux Kernel. In this work, the overall architecture

and concept will be introduced and a detailed description

of one particular guideline triplet will be provided,

implementing a full attestation of user-space processes.

II. BACKGROUND

A. Trusted Platform Module (TPM)

A Trusted Platform Module (TPM) is a computer chip

(microcontroller) that can securely store different

artifacts, for instance, passwords, certificates, or

encryption keys, for very different security relevant use-

cases. In addition to that, another core functionality of the

TPM is storing specific platform configuration

measurements that can be used to securely report the

configuration to an external system. Based on this

reported information, an external system can determine

whether the reporting system is currently in a trustworthy

state or not. This reporting and verification process is

called an attestation process. The TPM itself fulfills two

important requirements in this concept: (1) providing

authentication of reports, proofing the report originated

from a particular well-known system; and (2) providing

tamper-resistant reports, since the reported information is

directly derived from the secure storage of the TPM

providing hardware-based cryptography [2].

These designated storage areas inside the TPM are

called Platform Configuration Registers (PCRs) and

represent a configuration, i.e. a platform state, in form of

cryptographic hash values [3], which are managed by a

process called extending, implemented by the

tpm_extend() operation.

In turn, the tpm_quote() operation implements the

authenticated secure reporting capability by signing a set

of multiple PCRs based on a well-known TPM-key,

eventually enabling an external system to verify the

origin of the report.

B. Memory Management

The system memory is organized in two distinct

regions: kernel space and user space memory. The kernel

memory, reserved during early boot, is exclusively used

for kernel relevant operations and data-structures and the

user space memory is delegated to processes.

Different memory control structures and operations

exist inside the kernel. These manage and control the

access to different memory locations. Besides the

physical memory address pointing to a concrete physical

position in the system’s memory, there are three types of

addresses relevant in this work: (1) kernel logical

addresses, (2) kernel virtual addresses and (3) user virtual

addresses. The major difference is that logical addresses

(LA) directly map to physical addresses (PA), whereas

virtual addresses (VA) use a specific mapping mechanism

and may point to memory locations that are not yet

present in memory or swapped out; thus, they are not

directly accessible. User VA start at address 0x0, describe

a continuous area, are isolated from one another and their

layout is the same for every process. The kernel maps

these VA to the actual location in physical memory,

which may or may not be consecutive. Besides these,

there is the bus address type, but since it is not of interest

for this project, this type will not be further explained.

The kernel divides the system memory into pages

with a fixed size, i.e. usually 4096 bytes on x86 and

x86_64 architectures. As a result, a page is the smallest

unit the kernel can manage. Each page is identified by a

page table entry (PTE). A PTE contains a set of platform

dependent flags that describe different properties, for

instance, page state, page access rights and other

metadata.

The PTE are organized in a multilevel dictionary, i.e.

the page table, allowing quick lookups between a VA and

its related PTE. For this purpose a so called page frame

number (PFN) in encoded as part of the PTE. The PFN

identifies the related page and is retrieved by performing

a bit shifting operation on the PTE.

As mentioned previously, memory pages may not yet

be loaded in system memory or swapped out if the system

runs low of memory. When accessed, these missing pages

first need to be read from the hard drive and copied into

memory, which in turn is a very slow operation.

However, this is only relevant for user space memory,

since kernel space related pages are always present in

memory. Still, whether a page is present in memory or

not is indicated by the present flag inside the related PTE.

This information is important, since the state of the other

flags is undefined if a page is not present in memory.

To facilitate a simple and fast management of

processes, the kernel uses several nested data structures,

which are shown in figure 1. Top-level structure is the

task structure, which represents a single process inside

the kernel. The memory management structure (mm-

structure) is nested inside task structure. It contains

information about the memory that was allocated for this

specific process.

Process memory is divided into segments. Each

segment is represented by a virtual memory area (VM A)

structure, described by user VA specifying the beginning

(VM start) and end (VM end) of the segment. Additional

flags, derived from the correspondent PTE flags, describe

the access permission of each segment in a platform

independent way. This can be any combination of: (r)ead,

(w)rite or e(x)ecutable. Still, all pages that belong to a

particular segment must reproduce these flags on their

individual PTE. Thus, each page within a segment must

have the exact same flags.

Figure 1. Linux kernel memory management

C. Integrity Measurement Architecture (IMA)

IMA is a kernel integrity subsystem to detect

accidentally or maliciously altered software loaded by the

OS. For this purpose, IMA maintains a runtime

measurement list (RML) that is represented by a PCR

inside the TPM. This anchored value represents an

aggregated integrity value over the entire list with a

similar construction mechanism as used by the

tpm_extend() function. This enables the secure reporting

of the anchored measurement list, since it cannot be

compromised from software due to its tamper-resistant

properties assured by the TPM.

Figure 2 shows the basic steps of IMA procedure. At

first, IMA measures the loaded software component on

the observed system triggered by the mmap() system call.

Then, it generates a cryptographic hash of the file and

stores it in RML. Afterwards, IMA constructs the

aggregated integrity value and anchors it within TPM by

facilitating the tpm_extend() operation. In turn, TPM

computes its relevant cryptographic hash as described and

stores it into a PCR. RML can then be analyzed locally or

remotely by a verifying system in which measured values

are compared to well-known references. As a result, the

verification system can detect whether a loaded software

component was compromised and, in consequence,

decide if the observed system is in a trustworthy state, i.e.

behaving as intended.

Figure 2. IMA procedure overview

III. ARCHITECTURE

In this section the designed measurement and

verification system is described by outlining its structure,

all components as well as their tasks and interaction.

A. High Level Architecture

From a high level point of view the whole

measurement and verification system consists of three

subsystems, depicted in figure 3, which will be described

individually in the following sections.

On the observed system the Drive Kernel Module

(DKM) represents the central main component. The

DKM is responsible for performing the measurement of

user space processes, loadable kernel modules and the

running kernel image, by reading their actual memory

contents.

The second component, Reference Value Generator

(RVG) should ideally be run on an initially trusted

system. The RVG generates reference values on the basis

of well-known and trusted files, which are used to verify

the results produced by the DKM. Generated reference

values are stored in the Reference Value Storage (RVS).

To compare DKM measurement results to reference

values, the Drive Verification Component (DVC) is

required. It receives results from the DKM, searches for

corresponding reference values inside RVS and compares

these values. Furthermore, DVC generates a report stating

the verification process result which is stored in the

verification storage for further use.

Figure 3. High-level architecture

B. Drive Kernel Module (DKM)

The DKM is a loadable kernel module (LKM) for the

Linux kernel. It provides the framework for measurement

of user and kernel space memory areas as well as access

to the stored measurement results. The DKM architecture

can be split into four major components.

The first component manages the communication with

user space via a character device or a SecurityFS node,

both referred to as Drive Control Interface (DCI) in the

following. The DCI allows invoking measurements of

individual targets or the whole system via a command

string. For instance, a measurement target can be a single

user space process, an LKM or the image of the running

kernel. Additionally, a read operation on DCI is used to

retrieve the list of stored measurement results. The results

are encoded into a binary format and sent to the process

reading from the DCI. The PoC implementation uses the

Concise Binary Object Representation (CBOR) [4] to

represent the measurement results, but the

implementation can be modified to produce other binary

formats as well, for instance ASN.1.

The Drive Measurement Component (DMC) performs

the actual measurement of the target. This includes

enrichment of internal data structures with additional

information about the measurement target, selection and

execution of matching guidelines (see section III.E

Guidelines), and collection of the generated results. The

measurement operations inside this area are performed

asynchronously by using a Linux kernel work queue.

They may either be invoked by commands received via

DCI or, if configured, by a reoccurring timer. The latter is

realized by injecting a delayed work package into the

work queue that invokes a Full System Measurement

(FSM) once its timer has run out. After invocation of the

FSM, the work package re-queues itself into the work

queue, using the same delay as before. The timer can be

configured or disabled at module load time via a module

parameter.

Figure 4. DKM Architecture

The measurement results from DMC are injected into

a linked list, i.e. the Result List, storing the values for

further processing. The contents of this list are consumed

by the Anchoring Component. It processes the results

generated in the previous phase by removing unnecessary

information that is no longer required for the following

steps. Consequently, this process generates so-called

reduced results, which only contain the list of relevant

measurement result information. Irrelevant data, such as

information about the measurement target and

timestamps created during the measurement process are

dropped into save memory. The reduced results are then

processed, added to the Dynamic Measurement List

(DML) and anchored inside a trust anchor. As previously

explained, the anchoring provides a secure way to prove

and verify the integrity of the results during verification

(see section III.D Verification).

The PoC implementation of the DKM uses a TPM

chip as trust anchor. Both TPM 1.2 and TPM 2.0 are

supported [5], however, the current TPM 2.0 API

implementation inside the Linux kernel does only support

TPM 1.2 operations. Consequently, TPM 2.0 specific

features are not supported. For example, only SHA-1

hashes are supported for the PCR extend operation. On a

technical level, reduced results generated in the previous

step are serialized to the same binary format used for the

DML output. The resulting byte string acts as input for

the described tpm_extend() operation during the

anchoring process. The to-be-extended PCR is being

specified via a separate module parameter while the

module is loading.

Finally, DML management is conducted by

comprising all results that have been produced since the

module was loaded. The responsible component manages

insertion of new results into the list and allows read

access to the list’s content. Except for inserting new

results, DML needs to be immutable.

C. Reference Value Generator (RVG)

The Reference Value Generator (RVG) is a

complement to the DKM. It provides a framework to

generate reference values that will be used to verify the

integrity of the results produced by DKM. Although

different guideline implementations are required for

RVG, it utilizes a guideline system, which is similar to

the one used by DKM (see section III.E Guidelines). The

RVG itself is a user space process that should ideally be

operated on a machine other than the observed system.

The RVG requires trusted ELF files of all measurement

targets meant to be measured on the DKM side. As

expected, these files must match the exact same version

of the files on the target system, but should originate from

a secured and initially trusted reference system,

guaranteeing not to be compromised at time of reference

value generation.

The ELF files can be placed in a separate directory or

a directory structure, for instance a copy or dump of the

secure reference system. If the RVG is pointed to this

directory, it will read all ELF files found and generate

corresponding reference values. The exact generation

process is defined by the actual guidelines

implementation.

In addition to the generation of reference values, the

RVG provides an interface to specify additional

parameters of target systems. This includes, but is not

limited to, the index of the used TPM PCR, the version of

the QUOTE_INFO data structure generated by the TPM

and the configuration of the running kernel. Most of these

values are required to verify integrity of received DML

contents.

After their generation, the reference values and the

additional device parameters are stored inside RVS,

which usually is a database. The RVS must be accessible

by RVG during verification, explained in the following.

D. Verification

The Drive Verification Component (DVC) completes

the set of components required for the overall system

architecture. DMC verifies a set of results received from

DKM against the reference values generated by RVG.

The results of this verification determine whether a

system is considered trustworthy or compromised. Any

possible follow up actions that happen after the system

state was determined, especially in cases where the

system is considered compromised, is not in the scope of

this component. A remote attestation system may

integrate the DVC into a particular workflow, processing

the verification results and take necessary remediation

actions.

The input required for DVC is encapsulated in a

separate data-structure, i.e. the System State Report

(SSR). The SSR is a CBOR encoded data-structure and

consists of two elements: (1) a TPM quote at time of SSR

generation and (2) the DML, comprising the current

measurement results. A user space tool called SSR

Generator was implemented to build the SSR. It uses the

TPM tools to get the current TPM quote and reads the

encoded DML via the DCI.

The architecture of DVC is divided into two sub-

modules, which verify different aspects of the received

SSR. The first module verifies the integrity of DML by

replicating the tpm_extend()operation and comparing the

computed result with the comprised TPM quote. This

verification requires the initial PCR starting value. It then

takes one result at a time from DML, performs the

replicated TPM operation, and compares the result with

the quote received from SSR. If they don’t match, the

process is repeated with the next result until no results are

left or a matching result was found. If a matching result

was found before reaching the end of DML, the

remaining results are dropped and not verified. This is

necessary because the TPM extend operation runs

asynchronously which is why DML may contain results

that were not anchored in time. If the end of DML was

reached without a match, verification process is aborted

and a corresponding failure result is written to

verification storage. In this case, the received SSR was

either modified during transit, for instance due to a man-

in-the-middle attack or the observed system was modified

unintendedly, since DML measurement and verification

content is not coherent.

If the integrity of DML was verified successfully,

DML content is processed by the second verification

module. This module finally verifies the actual

measurement results against the reference values

generated by RVG. To find correct reference values in

the reference values storage, the verification requires

additional information about the target system, such as a

unique identifier (e.g. the IP address), the system’s patch

level or other metadata.

It then processes the measurement results found in the

DML, retrieves the corresponding reference values and

compares them. If they do not match, the system must be

considered compromised and a corresponding report is

generated. The actual comparison is again done by

guidelines. Each result contains information about the

guideline that generated it and, consequently, the

verification is aware of which guideline to call in order to

verify the specific result.

Since each verification guideline is implemented in a

way that exactly matches the reference values and results

generated by its complement part on the DMC and RVG

sides, not every result must have a matching individual

reference value. It is possible for a guideline to define a

result that must always match a specific value. Simply

comparing the result to this value is sufficient. This

means, eventually isolated cases no reference value is

required.

After processing all results inside DML a report for

the entire verification process is generated and stored in

the verification storage. The verification can only be

considered successful and valid, if the integrity

verification and all individual result entries were also

considered valid. If only a single entry was considered

invalid, the verification state results in a failure state,

which means the observed system is not in a trustworthy

state.

E. Guidelines

The system components described in the previous

sections are only frameworks that require additional

business logic to perform their actual operations. This

business-logic is represented as so-called guidelines.

Guidelines provide a flexible and highly dynamic way to

extend and modify the whole system. This is done by

implementing a single interface function with code,

tailored to fulfill the implementation specific behavior.

Guidelines come in sets of three implementations, one

for each of the major system components. The

implementations themselves are highly specialized for the

actual targets they will process. Since guidelines may be

added and removed from the system at any time, they

must not use any functionality provided by other

guidelines to prevent dependencies between them. If

multiple guidelines require the exact same functionality,

it should be added to the core frameworks and then

referenced by the guideline implementations.

All three implementations of a guideline must agree

on the results and reference values they will produce and

verify. Additionally, they need to agree on a system-wide

unique guideline name, which will allow the verification

framework to match results with their corresponding

reference values.

A DMC guideline implementation must be able to

generate measurement results for at least one type of

measurement target. Possible targets are user space

processes, LKM or a kernel image. It must provide a

public function that matches the interface definition

provided by DKM. The function receives a data structure

that describes the measurement target to be processed. If

the guideline implementation is used for multiple target

types, it must provide its own way to distinguish between

those and perform the correct operations. Still, the static

nature of the Linux kernel and LKM requires that the

implementation of the guideline is included in DKM

source code and made available to the guideline selection

process. A more dynamic way to add, remove and select

guidelines is planned for future developments but is not

part of this PoC implementation.

RVG implementation of a guideline must generate

reference values that can be processed by the verification

implementation to verify results produced by DMC

guideline. Current implementation of RVG requires the

guideline to provide a Python module that contains a

public function matching the interface definition

specified by RVG. The function receives an ELF file that

must be processed by guideline implementation.

Reference values themselves can be of any type. They

may be simple values that are directly compared with

values found in measurement results or prerequisites that

allow the verification component to perform further

calculations to compute actual reference values. The

implementation of the particular guideline triplet contains

details regarding which values are required and how these

are generated. RVG must know a guideline

implementation in order to access it. This can be achieved

by registering it using the command line API provided by

RVG.

The third required guideline implementation is used

by DVC. It must be able to receive measurement results

from DML exported by DMC guideline and compare

those to the reference values generated by RVG

guideline. The interface function provides guideline

implementation with both values; thus making it available

for DVC. For some results it may be required that the

verification guideline performs additional calculations to

get the actual reference values for result comparison. For

instance, this is required for results that contain memory

offsets only known at runtime. In this case RVG

generates base values required for calculation and DMC

results contain additional meta-data entries with the

relevant offsets, present at time of measurement.

Consequently, the verification guideline must combine

these base values and the received offsets and compare

the result to the actual measurement result. The current

implementation requires a verification guideline to be

available in the verification source code which also needs

to be accessed by the guideline selection mechanism.

Similar to DKM, a more dynamic way to add and remove

guidelines is planned for future developments.

IV. EXAMPLE GUIDELINE IMPLEMENTATION

This section will discuss an example of guideline

implementation. It will describe all three parts of the

guideline triplet and their individual operations at a more

detailed level. A basic understanding of Linux kernel

memory management might prove helpful to understand

all details. Please refer to section II.B for an introduction

to the required structures.

The first subsection will discuss DMC

implementation. In the second subsection RVG

implementation will be described and the third subsection

will finally explain the process of measurement result

validation. The example guideline will measure user

space processes.

A. DMC implementation

Once a measurement target was selected, DMC will

provide a data structure containing a reference to the

kernel structure that represents the actual target. The data

structure contains all information that is required for

identification and processing of the target. It is passed to

the guideline implementation alongside with an empty

list. The guideline is expected to fill this list with its

measurement results.

The goal of this example guideline is to access the

memory of a user space process, read all memory

segments that contain executable code, and calculate a

hash digest over the contents of each segment. The hash

is one of the results produced by this guideline.

Additionally, it reads the access rights on the segment

and tests if there are page table entries (PTE) that have a

different set of flags. Both are also produced as results.

This means, the guideline will return three results for

each memory segment that contains executable code.

To identify and access the memory segments in

question, the guideline must access the mm-structure via

the task structure and iterate over the list of VM area

structures contained inside, whereas each VM area

structure represents a single memory segment used by

this process. In addition to that, dynamically linked

libraries are also mapped into the process’ virtual

memory. Hence, the list also contains all VM area

structures of the linked libraries that need to be measured.

To identify the segments that must be processed the

guideline analyses the flags inside the VM area structure

whether they are readable and executable. Additionally,

the guideline checks if the shared flag is not set. Only

segments that are private to the process must be read. If

the flags match the requirements, they are extracted and

stored as a result entry. Since the flags are platform-

independent, RVG can generate a bit mask that must be

applied to the received flags to test for the correct set of

flags. Thus, they need no further processing and can be

added directly to the result list.

For each identified segment, the guideline then uses

the start and end addresses of the VM area to calculate

the number of pages this segment is composed of. The

guideline must make sure that each of these pages is

loaded into memory. As a result, it issues a request to

access each page, and the kernel loads them eventually

into memory. Once a page is loaded and available, its

contents are read and fed into a hash algorithm
1
.

Furthermore, the guideline resolves the PTE that

belongs to the current page by using the mm-structure of

the process and the start address of the page, which is a

user virtual address. The kernel provides functions to

perform this lookup. The resolved PTE is then tested for

the correct flags. If the PTE flags do not match the set of

flags required by the guideline, a result counter is

increased.

Once all pages for a segment are processed, the

guideline finalizes the hash operation, receives the digest

and adds it as a result entry to the result list. Finally, the

counter mentioned above is read and its value is added to

the result list as well. This concludes the measurement

operation on the DMC side.

B. RVG implementation

RVG operates on ELF files of the measurement target

and on all libraries that are dynamically linked into a

process. The process’ ELF file header information shows

which libraries are required.

To generate reference values for the VM area flags

the guideline builds a bit mask that matches the one

expected on the actual flags. This can be done because

the VM area flags are a platform-independent

1
 The algorithm can be configured at module compile time default

is set to SHA-1, but any algorithm supported by the kernel API may be

specified.

representation of the actual PTE flags. In case of the

memory segments, which are to be processed by this

guideline triplet, the reference value results in 0x5. That

means only read and execute flags are allowed to be set.

Generation of the reference hash digests for the

memory segment contents is more complicated. First, the

segment in question is located inside the ELF file and

copied into a buffer. In order to do this, the ELF file is

loaded with corresponding library functions and a data

structure is generated that allows access to individual

parts and information stored inside the ELF file.

Once the memory segment is copied, it must be page

aligned. This means that it must be appended with 0-

bytes until its length is a multiple of the page size of the

target system. As a result, RVG allocates additional

memory for the buffer and fills the allocated space with

0x0.

Once the memory segment is page aligned, the

guideline calculates several different hash-digests of its

contents and stores them as reference values. The values

are identified by a string, representing the hash algorithm

used. Hence, the verification can later identify which

reference value it has to select for the comparison.

No reference value is generated for the PTE flags test,

because the guideline implementations agreed on the fact

that this value always must be zero to be considered

valid. Any other value might indicate a compromised

system.

C. Verification implementation

The guideline implementation on the verification side

takes the measurement results provided by DMC and

compares them to the reference values provided by RVG.

The process of verification is simple in this case, because

it requires no complex calculations during the verification

process.

For each measurement target that was processed on

the DMC side, the verification receives a set of result

entries. This set contains all results generated for a user

space process as described in section IV.A. The

verification guideline iterates over all result entries and

performs the necessary validation steps. For each entry, a

report stating the verification state is generated and stored

in the verification storage. These reports can later be used

by reporting tools to generate a detailed verification

report for the target system.

The PTE flags test result is a comparison to a zero

value, since the guideline triplet agreed on this particular

result value. If it is different from zero, this individual

result entry is marked as invalid.

For the other result entries, the guideline retrieves the

relevant reference values from RVS and performs further

comparisons. This means, the result and reference hash

digests are compared bitwise. Only if both values are

equal, the result is considered valid.

To test the VM area flags, the set of flags received

from the DMC is compared to the corresponding

reference value. This is done by using bit-wise

operations. First, a bit-wise AND is calculated on the

basis of the result and a bit-mask that has all four relevant

bits set. These are the read, write, execute, and shared

flags, which match a mask of 0xF. Afterwards, the result

of this operation is compared to the reference value. If

they are equal, the required flags are set accordingly and

all other flags are not. In this case the result is considered

valid. Otherwise, it is considered invalid.

In case no reference value can be found for a specific

result entry, the entry is also considered invalid. This is

because unexpected elements must have been found on

the target system, which are not meant to be present for

the process. The same is true for reference values without

a matching measurement entry. In this case an expected

segment is missing on the target system.

DMC implementation will only provide the

configured digest of the segment. This means, once one

hash digest was found and verified, the other reference

values for different hash digests are ignored.

The guideline execution stops once all provided result

entries are processed.

V. CONCLUSION AND FUTURE WORK

In this work, instantiated architecture for secure

measurement and verification of Dynamic Runtime

Information for Linux based OS was presented. Our

solution facilitates hardware based security technologies

and enables an attestation on the basis of introduced

guidelines. The presented guidelines represent a

particular triplet set of rules, to attest a targeted system,

on the basis of generated reference values. The

application of a triplet-set on the basis of user space

processes was demonstrated and all necessary steps to

conduct a secure attestation were described. In future

work, further capabilities of guidelines will be exploited

and concrete guideline triplets for more complicated

attestation schemes, such as LKM or the Linux kernel,

will be provided.

REFERENCES

[1] Arun K. Kanuparthi: Architecture Support for Dynamic Integrity

Checking. IEEE Transactions on Information Forensics and

Security, Vol. 7, No. 1, February 2012. p. 321-332, DOI:

10.1109/TIFS.2011.2166960

[2] Trusted Computing Group: Trusted Platform Module (TPM)
Summary. https://trustedcomputinggroup.org/trusted-platform-

module-tpm-summary/, Date Published: April, 01, 2008

[3] Will Arthur, David Challener, A Practical Guide to TPM 2.0, P13,
EAN: 9781430265849

[4] C. Bormann, P. Hoffman: Concise Binary Object Representation

(CBOR). Internet Engineering Task Force (IETF), RFC 7049,
IETF in October 2013

[5] Trusted Computing Group: Trusted Platform Module (TPM) 2.0. a

brief introduction, https://www.trustedcomputinggroup.org/wp-
content/uploads/TPM-2.0-A-Brief-Introduction.pdf, 2015

[6] Andre Rein: DRIVE: Dynamic Runtime Integrity Verification and
Evaluation. In Proceedings of the 2017 ACM on Asia Conference

on Computer and Communications Security (ASIA CCS '17),

2017, DOI: https://doi.org/10.1145/3052973.3052975

